Review: Diffraction from a Lattice

One atom in each unit cell

- Scattering vector (S) is fixed to certain values:
 - Direction is perpendicular to Bragg plane defined by Miller indices
 - Magnitude is given by:

$$|S| = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)^{1/2} = \frac{2\sin\theta}{\lambda}$$

Diffraction in a Protein Crystal

- Many atoms in a single unit cell (fixed position in each unit cell)
- Each atom contains multiple electrons
- Simple case: What happens when two electrons scatter (not in a crystal)?
- Simpler case: Scattering from a single electron

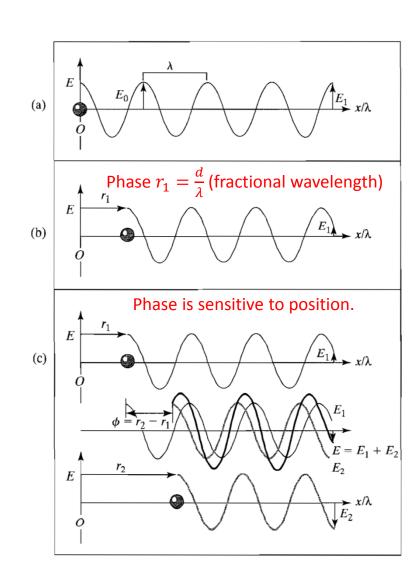
Single Point Scatterer

 Light scattering from a point source:

$$|E| = E_0 \cos 2\pi \left(\nu t - \frac{x}{\lambda} + \phi \right)$$

= $E_0 \cos(\omega t - kx + \phi)$

- Remember $c = \omega/k$
- Use Euler formula for convenience: $|E|(\omega,t) = E_0 e^{i(\omega t kx + \phi)}$
- Convention: Ignore imaginary component



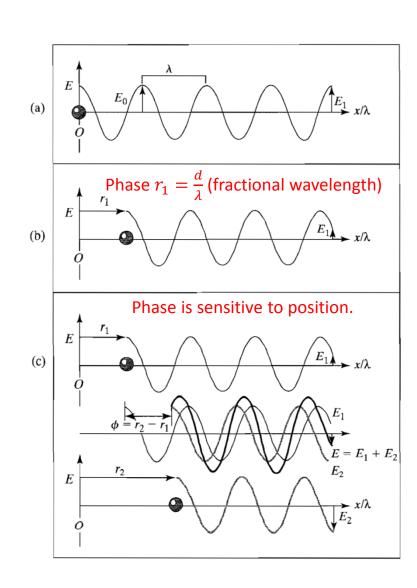
Single Point Scatterer

$$|E| = E_0 \cos 2\pi \left(\nu t - \frac{x}{\lambda} + \phi \right)$$

= $E_0 \cos(\omega t - kx + \phi)$

- E₀ is dependent on R (distance to detector) and orientation, but at large distances is roughly constant
- Electron at origin: ϕ is spherically symmetric:

$$\phi = (kR - \omega t) + \frac{\pi}{2}$$



Add a Second Electron

Detector

- Phase shift:
 - Electron at origin:

$$\phi = (kR - \omega t) + \frac{\pi}{2}$$

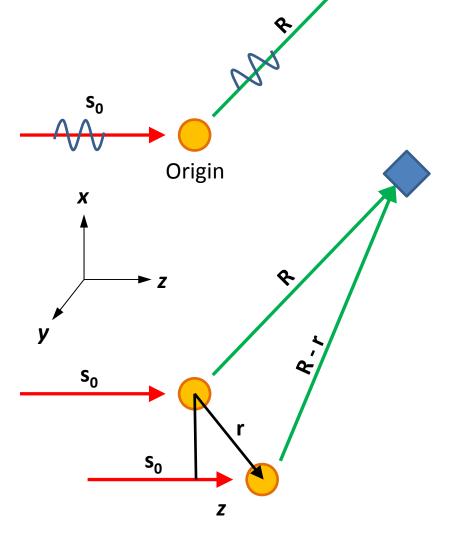
— Second electron:

$$\phi = [k(z + |\mathbf{R} - \mathbf{r}|) - wt] + \frac{\pi}{2}$$

Phase difference:

$$\Delta \phi = k(z + |\mathbf{R} - \mathbf{r}| - R)$$

• No significant difference in E_0



Simplifying the Phase Difference

$$\Delta \phi = k\{z + |\mathbf{R} - \mathbf{r}| - R\}$$

$$= k\{z + [(\mathbf{R} - \mathbf{r}) \cdot (\mathbf{R} - \mathbf{r})]^{1/2} - R\}$$

$$= k\{z + [R^2 - 2(\mathbf{R} \cdot \mathbf{r}) + r^2]^{1/2} - R\}$$

$$= k\{z + R[1 - 2(\mathbf{R} \cdot \mathbf{r})/R^2 + (r/R)^2]^{1/2} - R\}$$

$$\approx k\{z - (\mathbf{r} \cdot \mathbf{R})/R\}$$

Note that $r \ll R$, so $r/R \ll 1$, and:

$$\sqrt{1 - \frac{2(\mathbf{R} \cdot \mathbf{r})}{R^2} + \left(\frac{r}{R}\right)^2} \approx 1 - \frac{(\mathbf{R} \cdot \mathbf{r})}{R^2} - \frac{1}{2} \frac{r^2}{R} - \cdots$$

[&]quot;Miller Index," Wikipedia.

Add a Second Electron

- Let s₀ and s be unit vectors pointing along initial and scattering vector of light
- Then:

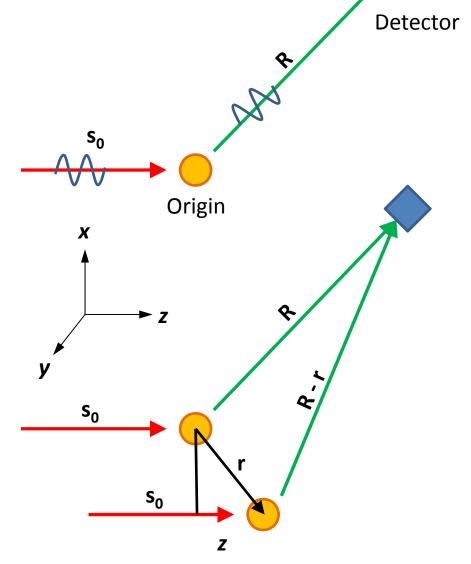
$$\Delta \phi \approx k\{z - (\mathbf{r} \cdot \mathbf{R})/R\}$$

$$= k[(\mathbf{r} \cdot \mathbf{s_0}) - (\mathbf{r} \cdot \mathbf{s})]$$

$$= k\mathbf{r} \cdot (\mathbf{s_0} - \mathbf{s})$$

$$\Delta \phi = -2\pi \, \boldsymbol{r} \cdot \boldsymbol{S}$$

• $\Delta \phi$ is dependent on the scattering vector and the position within the unit cell



Multiple Electrons

Sum the contribution from each point scatterer:

$$E_{tot} = \sum_{j=1}^{N} E_0 \exp(i\phi_j)$$

$$E_{tot} = E_{0(r=0)} \sum_{j=1}^{N} \exp(-i2\pi\Delta\phi_j)$$

Scattering from one electron

• This initial term can be factored out to give scattering "relative" to electron at origin; E_{tot} increases with more electrons

Important Points

Phase is mostly dependent on position of electrons

Amplitude is mostly dependent on number of electrons

The Structure Factor

(Molecular Scattering Factor in your Book)

$$F(hkl) = F(S) = \sum_{j=1}^{N_{atom}} f_j e^{-2\pi i (S \cdot r)}$$

- Remember: only real part counts
- Crystal lattice makes S discrete (only see values for h, k, l)
- F is proportional to intensity at each reflection

The Structure Factor

(Molecular Scattering Factor in your Book)

$$F(hkl) = F(S) = \sum_{j=1}^{N_{atom}} f_j(S) e^{-2\pi i (S \cdot r)}$$

Atomic scattering factor

- f_j is linearly proportional to number of electrons in atom j (think about homework)
- Related to electron density

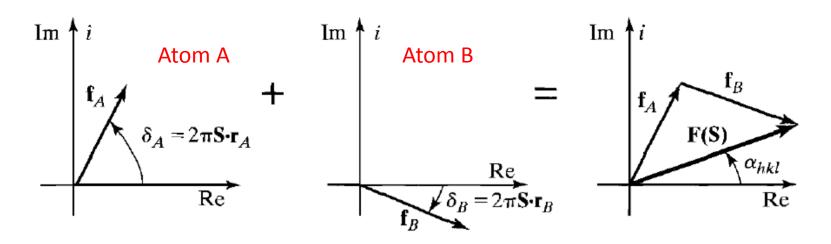
The Most Important Slide

$$\rho(\mathbf{r}) \propto \int\limits_{V} F(\mathbf{S}) \, e^{-2\pi i (\mathbf{S} \cdot \mathbf{r})} d\mathbf{r}$$

Inverse Fourier transform is electron density

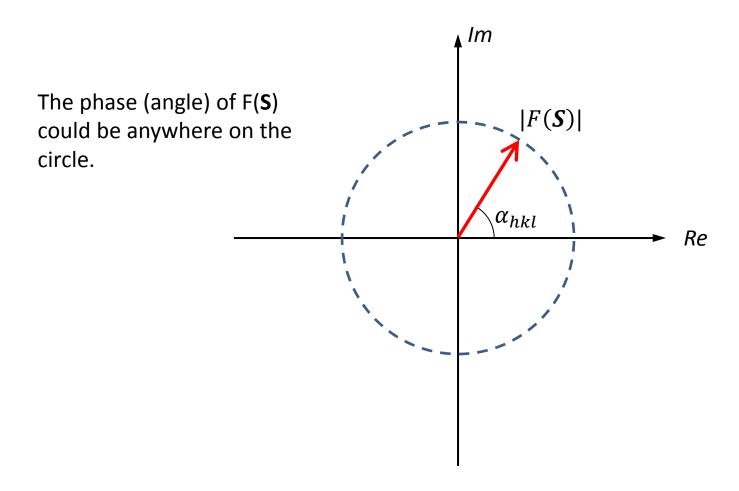
• If intensities <u>and phases</u> of structure factors were known, one could calculate $\rho(r)$

The Phase Problem



- Each reflection has an amplitude (observable) and phase difference (not observable on film)
- Intensities are weakly dependent on phase, but dominated by crystal
- Argand diagrams are easy way to represent phase

The Phase Problem



Solving the Phase Problem

Molecular replacement (if similar structure is known)

Patterson maps (for small groups of atoms)

Multiple isomorphous replacement

Multiple-wavelength anomalous dispersion

Patterson Maps

- Appropriate for small numbers of atoms
- Fourier transform of intensities directly:

$$P(x, y, z) = \frac{1}{V} \sum_{h,k,l} |F(S)|^2 e^{2\pi i (S \cdot r)}$$

 This is a density map that will plot every combination of possible distance pair in the unit cell (see next slide)

Patterson Maps

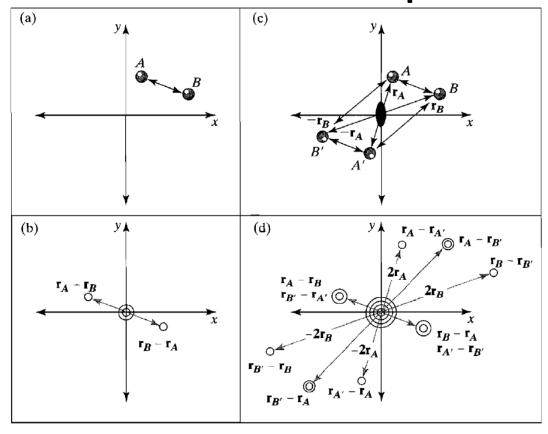
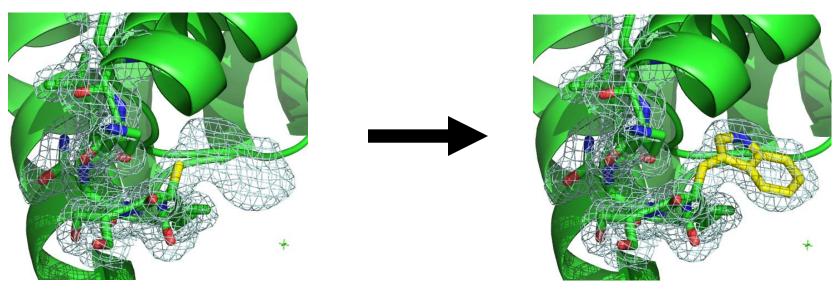


Figure 6.28 Patterson maps of two atoms in a unit cell. (a) Two unique atoms A and B in a unit cell are displaced from the origin by the distance vectors \mathbf{r}_A and \mathbf{r}_B . (b) The Patterson map for the two atoms shows two cross vectors, one for the vector from A to B and the other from B to A. The two self-vectors (A to A and B to B) result in two contours at the origin of the map. (c) Two additional atoms, A' and B', are generated in a crystal with two-fold rotational symmetry. Although there are still only two unique atoms, there are now four additional cross vectors. If this is a Harker section in the Patterson map, the additional cross vectors are $2\mathbf{r}_A$ and $2\mathbf{r}_B$. This allows us to determine \mathbf{r}_A and \mathbf{r}_B (or the atomic coordinates of A and B) directly from the Patterson map.

Molecular Replacement



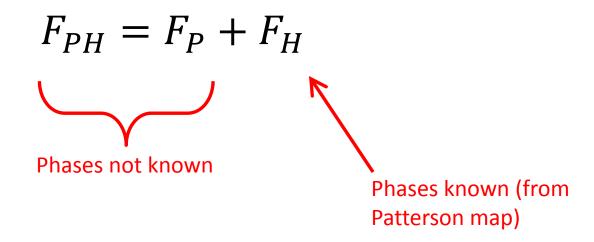
Wild-Type (Ala) phasing used on mutant reflections will reveal extra density, which can be fit mutation (to Trp). All atoms contribute to $\rho(r)$, not just those from Trp.

- Idea: Use a similar structure to generate phases, then refine based on rough structure
- Patterson map can be used to orient molecule

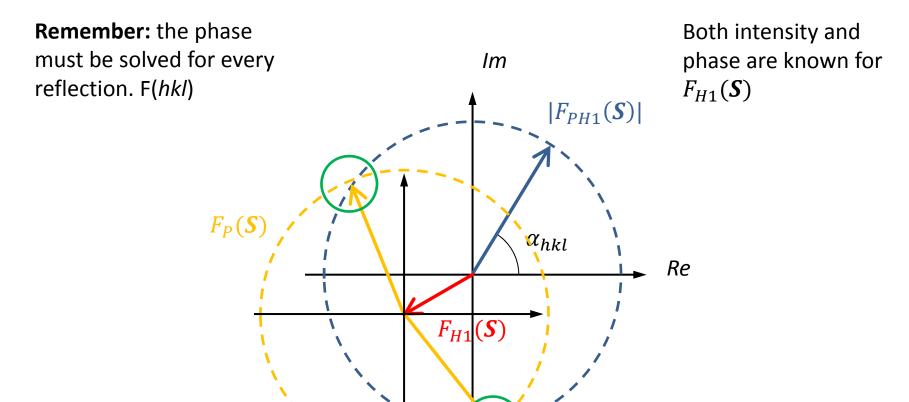
- Incorporate heavy metals (selenium, mercury, etc.) into crystal
 - Cannot perturb structure/unit cell
 - Example: Selenomethionine

- Metal will scatter strongly; only a few per unit cell
 - Use Patterson to determine phase of metal scattering

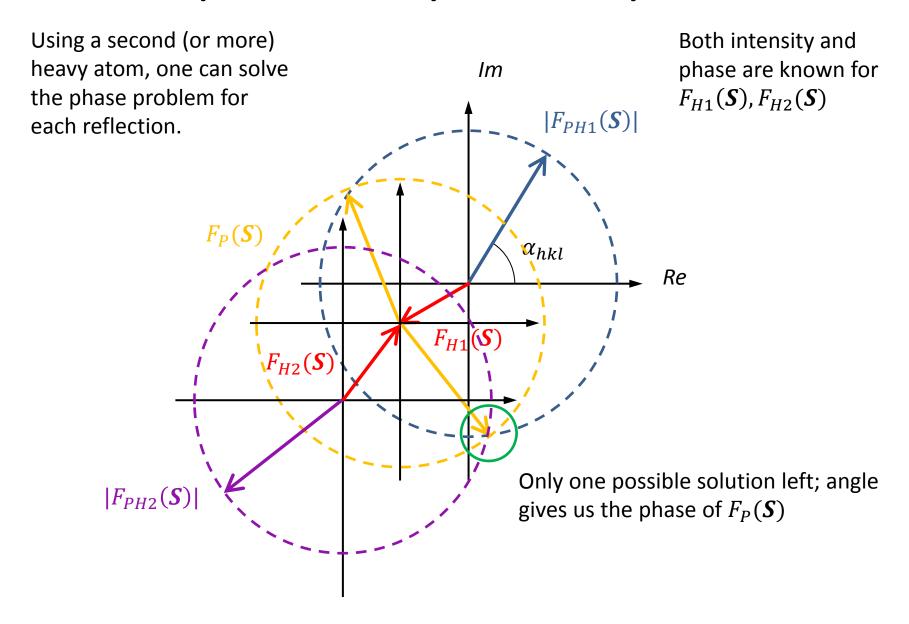
Ideally, scattering will be additive:



 Use multiple heavy atoms to find phases (see next slide)



Two possible solutions at intersections (green circles)



Multiple-Wavelength Anomalous Dispersion

- Advantage: Phasing with only one heavy atom derivative (often selenomethionine)
- Disadvantage: Usually requires tunable X-ray source (i.e. a synchrotron)
- Use X-rays near absorption edge of heavy metals to disrupt the relationship that $F(hkl) = F(\bar{h}\bar{k}\bar{l})$

Summary

- Scattering is convolution of diffraction from discrete hkl reflections (crystal) and electron density $\rho(r)$ (molecule)
- Phases are sensitive to position; amplitudes, not so much
- Inverse Fourier transform of structure factor intensities (reflections) and phases gives $\rho(r)$
- Phases not recorded on film/image plates/CCD
- Four main strategies to solve phasing problem