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Nuclear Overhauser Effect (NOE)

e Dipole relaxation from nearby spins results in
transfer of magnetization

 Heteronuclear NOE: limited distance (*>’N-1H
bond), used mostly for dynamics experiments

e Homonuclear NOE (*H-'H): High y value of
proton = longer distances possible (~ 6 A)



Homonuclear NOE Experiment (2D)
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 Magnetization is transferred during t,,,;, at a rate

dependent on geometry (r « r~°)

e Faster rate = more transfer > more intense crosspeaks

Rule & Hitchens, p. 360.



Homonuclear NOE

e Diagonal peaks: no
transfer

* Cross peaks:
geometrically close
protons (unlike
TOCSY, where cross .
peaks are bonded) o

Water Signal

http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/images/2dnosy_1.gif



NOE Transfer vs. Size

Figure 16.7 Effect of rotational cor-
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 Organic chemists often see negative cross peaks

e Some small peptides give no NOE cross peaks
(need to use ROESY)

Rule & Hitchens, p. 364.



NOE = Distances

e Best approach:
calibrate transfer rates
using several mixing
times (takes a lot of
fitting)
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e Commonly done:
measure intensity,
calibrate to known
distance (i.e. helix H\—
H, distance)
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Rule & Hitchens, p. 368.



Chemical Shifts

e Chemical shifts contain information on
electronic environment

 Primary structure is most important, difficult
to interpret by a computer (see CS-ROSETTA)

e Still not possible to look at HSQC and tell
structure, although homologous proteins tend
to give similar patterns



Secondary Chemical Shifts
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IN CCD Secondary Shifts
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Residual Dipolar Couplings

* Energetic coupling
between bond vector
and B field

* Normally averages to
Zero

* Aligned media:
recover the coupling

Magnetic Field




Residual Dipolar Couplings




RDCs and Structure

e Determine alignment
frame: how does the
molecule align in the
media?

 Not easy if you don’t
know the structure!

 Then, can interpret all
RDCs as an angle
relative to that frame

Rule & Hitchens, p. 371.



Putting it all Together
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Rule & Hitchens, p. 383.



