Karplus Equation

Nuclear Overhauser Effect (NOE)

 Dipole relaxation from nearby spins results in transfer of magnetization

Heteronuclear NOE: limited distance (¹⁵N-¹H bond), used mostly for dynamics experiments

• Homonuclear NOE (${}^{1}H-{}^{1}H$): High γ value of proton \rightarrow longer distances possible (\sim 6 Å)

Homonuclear NOE Experiment (2D)

- Magnetization is transferred during τ_{mix} at a rate dependent on geometry $(r \propto r^{-6})$
- Faster rate → more transfer → more intense crosspeaks

Homonuclear NOE

 Diagonal peaks: no transfer

Cross peaks:
 geometrically close
 protons (unlike
 TOCSY, where cross
 peaks are bonded)

NOE Transfer vs. Size

Figure 16.7 Effect of rotational correlation time on NOESY crosspeak intensity. The crosspeak intensity as a function of the rotational correlation time is shown. An inter-proton distance of 2 Å and a spectrometer frequency of 500 MHz was used in this calculation. For reference, a 20 residue peptide would have a rotational correlation time of ≈ 1 nsec ($\log \tau_c = -9$).

- Organic chemists often see negative cross peaks
- Some small peptides give no NOE cross peaks (need to use ROESY)

NOE Distances

- Best approach: calibrate transfer rates using several mixing times (takes a lot of fitting)
- Commonly done: measure intensity, calibrate to known distance (i.e. helix H_N-H_N distance)

Rule & Hitchens, p. 368.

Chemical Shifts

Chemical shifts contain information on electronic environment

 Primary structure is most important, difficult to interpret by a computer (see CS-ROSETTA)

 Still not possible to look at HSQC and tell structure, although homologous proteins tend to give similar patterns

Secondary Chemical Shifts

• Definition:

$$\Delta \delta$$
 = ppm_{observed} - ppm_{random coil}

IN CCD Secondary Shifts

50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 GSHMHGEVDSSPGIWQLDCTHLEGKVILVAVHVASGYIEAEVIPAETGQETAYFLLKLAGRWPVKTVHTDNGSNFTSTTVKAACEWAGI

Residual Dipolar Couplings

 Energetic coupling between bond vector and B field

 Normally averages to zero

 Aligned media: recover the coupling

Residual Dipolar Couplings

RDCs and Structure

- Determine alignment frame: how does the molecule align in the media?
- Not easy if you don't know the structure!
- Then, can interpret all RDCs as an angle relative to that frame

Putting it all Together

 Computer-intensive process

 Use molecular force fields with experimental data

