Fluorescence Polarization

From *Biophysical Chemistry, Part II* Cantor & Schimmel, Chapt. 8, p. 456

Excited Chromophore Distribution

Figure 8-22

Distribution of excited chromophores produced by exciting a sample with z-polarized light propagating along the x axis. The density of the shading is proportional to the probability of finding an excited molecule with its transition dipole at that particular orientation.

$$W(\theta, \varphi) = \left(\frac{3}{4\pi}\right) \cos^2 \theta \sin \theta$$

Dynamics from Fluorescence

Time-Dependent Fluorescence Anisotropy

From *Biophysical Chemistry, Part II* Cantor & Schimmel, Chapt. 8, p. 462

Perrin Plots

From *Biophysical Chemistry, Part II* Cantor & Schimmel, Chapt. 8, p. 464-5

Summary

- Preferential absorption of polarized light will give rise to polarized fluorescence
- Molecular motion will result in fluorescence depolarization
 - Over time, fluorescence aniosotropy $r \rightarrow 0$
- Decay rate (τ_c) is related to rotational diffusion coefficient
- Steady-state depolarization can be used to estimate τ_c (and hydrodynamic volume) if τ_{obs} for a fluorophore is known (Perrin plot)