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COUPLED FOLDING AND BINDING (THERMODYNAMIC LINKAGE) 
Nicholas Fitzkee, CH 4404 

 
 The “question of the day” in class today asked how one could represent coupled folding 
and binding using the table of states approach.  In this situation, we have a protein that can exist 
in the folded (N) and unfolded (U) states, and we have a small molecule (L) capable of binding 
only the folded state (NL).  The relevant equilibria are: 
 

 N ⇄	 U	 Keq	ൌ		ܭ௎ ൌ
ሾ௎ሿ

ሾேሿ
	

	 N	൅	L	 ⇄	 NL	 Keq	ൌ	ܭ஺ ൌ
ሾே௅ሿ

ሾேሿሾ௅ሿ
	

	
Given	this	situation,	our	protein	can	adopt	three	different	states.		We	can	write	the	table	of	
states,	assuming	that	U	is	the	reference	state	when	calculating	our	weights:	
	

State	 Weight Weight	
Expression	

U	
ሾܷሿ
ሾܷሿ

௎ݓ ൌ 1

N	
ሾܰሿ
ሾܷሿ

ேݓ ൌ ?

NL	
ሾܰܮሿ
ሾܷሿ

ே௅ݓ ൌ?

	

We	can	use	some	algebra	to	determine	the	empty	tables	above.	 	For	example,	 if	ܭ௎ ൌ
ሾ௎ሿ

ሾேሿ
,	

then	we	know	that	
ሾேሿ

ሾ௎ሿ
ൌ ௎ܭ

ିଵ.	 	Similarly,	we	can	show	that		
ሾே௅ሿ

ሾ௎ሿ
ൌ ௄ಲ

௄ೆ
ሾܮሿ	by	combining	the	

equilibrium	expressions	above.		Thus:	
 

State	 Weight Weight	
Expression	

U	
ሾܷሿ
ሾܷሿ

1

N	
ሾܰሿ
ሾܷሿ

௎ܭ
ିଵ

NL	
ሾܰܮሿ
ሾܷሿ

௎ܭ஺ܭ
ିଵሾܮሿ	

 
Now, suppose we want to calculate the fraction of protein folded as a function of free ligand 
concentration.  It makes sense from Le Chatelier’s principle that, if a protein is marginally stable, 
we should be able to “drive” it to the folded state by adding enough L.  The fraction of folded 
protein is measurable for many systems, and it is given by: 
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݂ ൌ
folded	protein
total	protein	

ൌ
ሾܰሿ ൅ ሾܰܮሿ

ሾܷሿ ൅ ሾܰሿ ൅ ሾܰܮሿ
ൌ

ሾܰሿ
ሾܷሿ ൅

ሾܰܮሿ
ሾܷሿ

ሾܷሿ
ሾܷሿ ൅

ሾܰሿ
ሾܷሿ ൅

ሾܰܮሿ
ሾܷሿ

ൌ
ேݓ ൅ ே௅ݓ

௎ݓ ൅ ேݓ ൅ ே௅ݓ
 

݂ ൌ
௎ܭ
ିଵ ൅ ௎ܭ

ିଵܭ஺ሾܮሿ
1 ൅ ௎ܭ

ିଵ ൅ ௎ܭ
ିଵܭ஺ሾܮሿ

 

 
The expression above isn’t pretty, but it makes sense.  Suppose in the absence of ligand a protein 
is marginally stable, i.e. ܭ௎ ൌ 1, but assume that the ligand has a relatively strong equilibrium 
constant of ܭ஺ ൌ 1 ൈ 10଺.  Plotting the expression above gives the following plot: 
 

 
 
As we expect, the addition of ligand drives the folding reaction to the folded state. 
 
Does the Reference State Matter? 
 

Alternatively, we could imagine a system where we chose the native state as the 
reference state.  In class, I argued that the observable (fraction folded) cannot depend on the 
choice of the reference state.  This simple system allows us to test this idea.  Constructing the 
same table as above, but choosing N as my reference, I get: 

 
State	 Weight Weight	

Expression	

U	
ሾܷሿ
ሾܰሿ

௎ܭ

N	
ሾܰሿ
ሾܰሿ

1

NL	
ሾܰܮሿ
ሾܰሿ

ሿܮ஺ሾܭ

 
The weights are clearly different, but what happens when I calculate the fraction of folded 
protein?   
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݂ ൌ
ேݓ ൅ ே௅ݓ

௎ݓ ൅ ேݓ ൅ ே௅ݓ
ൌ

1 ൅ ሿܮ஺ሾܭ
௎ܭ ൅ 1 ൅ ሿܮ஺ሾܭ

 

 
This seems different, but if I multiply both the numerator and denominator by ܭ௎

ିଵ, I get: 
 

݂ ൌ
௎ܭ
ିଵ ൅ ௎ܭ஺ܭ

ିଵሾܮሿ
1 ൅ ௎ܭ

ିଵ ൅ ௎ܭ஺ܭ
ିଵሾܮሿ

 

 
This is identical to the expression we derived assuming that the U state was the reference state.  
Thus, the choice of reference state makes no difference on the observable expression. 
 
Why Does pH Unfold Proteins? (Bonus Material – Not on Your Exam) 
 
 We can extend the treatment above to handle pH effects in protein folding.  It is known 
that many proteins will unfold at extremes of pH.  Suppose we have a simple system where both 
the folded state and the unfolded state bind a proton, but they have different affinities for proton 
binding.  In this situation: 
 

 N ⇄	 U	 Keq	ൌ		ܭ௎ ൌ
ሾ௎ሿ

ሾேሿ
	

	 N	൅	H	 ⇄	 NH	 Keq	ൌ	ܭேு ൌ
ሾேுሿ

ሾேሿሾுሿ
	

	 U	൅	H	 ⇄	 UH	 Keq	ൌ	ܭ௎ு ൌ
ሾ௎ுሿ

ሾ௎ሿሾுሿ
	

	 NH	 ⇄	 UH	 Keq	ൌ	ܭ௎ ∙
௄ೆಹ
௄ಿಹ

ൌ
ሾ௎ுሿ

ሾேுሿ
	

 
Remember that, for the last expression, we know the equilibrium constant because these 
equations form a complete thermodynamic cycle.  If the sum of all Δ̅ܩ଴’s must be zero around 
the thermodynamic cycle, then the product of all the K’s is equal to one. 
 
 As before, we can set up a table of states: 
 

State	 Weight Weight	
Expression	

U	
ሾܷሿ
ሾܷሿ

1

N	
ሾܰሿ
ሾܷሿ

௎ܭ
ିଵ

NH	
ሾܰܪሿ
ሾܷሿ

௎ܭேுܭ
ିଵሾܪሿ	

UH	
ሾܷܪሿ
ሾܷሿ

ሿܪ௎ுሾܭ
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The fraction folded is determined as before: 
 

݂ ൌ
ேݓ ൅ ேுݓ

௎ݓ ൅ ௎ுݓ ൅ ேݓ ൅ ேுݓ
ൌ

௎ܭ
ିଵ ൅ ௎ܭேுܭ

ିଵሾܪሿ

1 ൅ ሿܪ௎ுሾܭ ൅ ௎ܭ
ିଵ ൅ ௎ܭேுܭ

ିଵሾܪሿ
 

 

݂ ൌ
ሺ1 ൅ ሿሻܪேுሾܭ

௎ሺ1ܭ ൅ ሿሻܪ௎ுሾܭ ൅ ሺ1 ൅ ሿሻܪேுሾܭ
 

 

݂ ൌ
1

௎ܭ ∙
1 ൅ ሿܪ௎ுሾܭ
1 ൅ ሿܪேுሾܭ

൅ 1
ൌ

1
௔௣௣ܭ ൅ 1

 

 
Remember from your homework assignment that the fraction of folded protein in the absence of 
any pH effects is given by: 
 

݂ ൌ
1

ܭ ൅ 1
 

 
When pH effects are present, the expression has a similar functional form, but the observed 
equilibrium constant (ܭ௔௣௣) includes additional terms that depend on the proton concentration.  
Keeping in mind that proton concentration is given by ܪ݌ ൌ െ logሾܪሿ (alternatively,  
ሾܪሿ ൌ 10ି௣ு) and that the acid dissociation constants in the bound and unbound form are 
௎ுܭ
ିଵ ൌ ஺ܭ

௎ and ܭேு
ିଵ ൌ ஺ܭ

ே respectively, we can write the apparent equilibrium constant in more 
conventional terms: 
 

௔௣௣ܭ ൌ ௎ܭ ∙
1 ൅ 10൫௣௄ಲ

ೆି௣ு൯

1 ൅ 10൫௣௄ಲ
ಿି௣ு൯

 

 
Now suppose that ܭ௎ ൌ 1 ൈ 10ିଵ, ܭ݌஺

௎ ൌ 6.6, and ܭ݌஺
ே ൌ 5.  This corresponds to a histidine 

residue that has shifted its pKA in the folded state, possibly because the local environment is 
somewhat less solvent exposed (and thus the uncharged state is preferred).  In this case: 
 

 
 
The result here makes sense; as the pH increases, the neutral state of His is favored, which in 
turn favors folding.  This is very complex behavior, but our simple “table of states” approach is 
nevertheless able to reproduce it. 


