What is an Enzyme?

- Catalyst: Increases the rate of a reaction without being used up
- Macromolecule: Most enzymes are proteins; a few are RNAs
 - Some enzymes require both protein and RNA (e.g., ribosome)
- Physical topics: Binding, inhibition, kinetics, transition states

Enzyme Example: Acetylcholinesterase

Hydrolysis of acetylcholine:

[&]quot;Acetylcholinesterase." Wikipedia.

What Does an Enzyme Do?

Reaction Coordinate

 Enzymes lower the activation energy by stabilizing the transition state

Transition State Analogs

A good enzyme will bind the transition state:

 A good enzyme will <u>not</u> bind the reactants or products tightly. Why?

Why Study Enzymes?

• Interesting:

- How does life work?
- Origins of biochemical processes? (RNA world?)

Practical:

- Medical applications
- Engineer better (biologically-based) catalysts
- Green technology

Enzyme Kinetics

Decomposition of H₂O₂:

$$2H_2O_2 \xrightarrow{\text{catalase}} 2H_2O + O_2$$

- Observation for constant [catalase]:
 - Low [H₂O₂]: kinetics are first order
 - High [H₂O₂]: kinetics are zero order
- Why? (Discuss)

Enzyme Kinetics

Catalyst	Rate, $-d[H_2O_2]/dt$ ($M s^{-1}$)	E_a (kJ mol $^{-1}$)
None	10^{-8}	71
HBr	10^{-4}	50
Fe^{2+}/Fe^{3+}	10 ⁻³	42
Hematin or hemoglobin Fe(OH) ₂ TETA ⁺	10^{-1} 10^{3}	 29
Catalase	107	8

$$-\frac{d[H_2O_2]}{dt} = \frac{k}{k}[H_2O_2][\text{catalase}]$$

Wash, Rinse, Repeat

Toward a Model for Enzyme Kinetics

- Make some observations:
 - How does rate change with $[H_2O_2]$, enzyme?
- Propose/change the model: The hardest part
- Test the model:
 - Does it agree with the observations?
- Try to disprove the model:
 - Collect more data!

Enzyme Kinetic Data

• Experiment Set #1: Start with constant concentration of substrate (e.g., $[H_2O_2]$), vary [enzyme]

Enzyme Kinetic Data

 Experiment Set #2: Hold [enzyme] constant, vary initial concentration of substrate: <u>maximum initial velocity</u>

Collected Enzyme Kinetic Data

- Note the change in axes!!!
- Each point on the curves represent a <u>different experiment!</u>

Summary of Observations

• Initial velocity is proportional to [S] at low [S] $v_0 = k[S]$

- At high [S], initial velocity approaches a maximum $v_0 = v_{max}$
- Maximum initial velocity is proportional to total enzyme concentration ($[E_0]$)

$$v_{max} = k'[E_0]$$

Michaelis-Menten Kinetic Model

$$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \xrightarrow{k_{cat}} P + E$$

- Irreversible: applies for initial formation of product
- Rate equations:

$$\frac{d[S]}{dt} = -k_1[E][S] + k_{-1}[ES]$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_{cat}[ES]$$

$$\frac{d[P]}{dt} = k_{cat}[ES]$$

Michaelis-Menten Kinetic Model

• **Goal:** Find an expression for v_0 vs. [S], $[E_0]$, see if it agrees with our observations

• Approximations:

- ES complex is at steady-state: $\frac{d[ES]}{dt} = 0$
- Concentration of complex is small compared to substrate:

$$[S_0] = [S] + [ES] \approx [S]$$

You <u>cannot</u> make the same assumption for [E₀]!

$$[E_0] = [E] + [ES]$$

Derivation of MM Kinetics

Rate equations:

$$\frac{d[S]}{dt} = -k_1[E][S] + k_{-1}[ES]$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_{cat}[ES]$$

$$\frac{d[P]}{dt} = k_{cat}[ES]$$

Derivation of MM Kinetics

Result:

$$v_0 = \frac{d[P]}{dt} = \frac{k_{cat}[E_0]}{\frac{K_M}{[S]} + 1} = \frac{k_{cat}[E_0][S]}{K_M + [S]}$$

- As [S] $\rightarrow \infty$, $v_0 \rightarrow k_{cat}[E_0] = v_{max}$
 - There is a limit to the velocity (check)
 - The limit is proportional to the enzyme concentration (check)
- As [S] \rightarrow 0, $v_0 \approx \frac{v_{max}}{K_M}[S]$
 - Rate is proportional to [S] at low [S] (check)

How to Determine K_M , V_{max} ?

- When [S] = K_M , $v_0 = \frac{1}{2}v_{max}$
- But the asymptote may be hard to determine!

How to Determine K_M , V_{max} ?

By eye: This is not usually reliable!

- Nonlinear fitting: The best method
 - Requires a computer to optimize parameters

- Linearize the data: Good for undergraduates
 - Get K_M, v_{max} from slope, intercept of a line

Linearizing Michaelis-Menten

Lineweaver-Burk Plot

- Plot
$$\frac{1}{v_0}$$
 vs. $\frac{1}{[S]}$

- Slope:
$$\frac{K_M}{v_{max}}$$

- Intercept:
$$\frac{1}{v_{max}}$$

Mathematical form:

$$\frac{1}{v_0} = \frac{1}{v_{max}} + \frac{K_M}{v_{max}} \cdot \frac{1}{[S]}$$

Linearizing Michaelis-Menten

Eadie-Hofstee

- Plot
$$v_0$$
 vs. $\frac{v_0}{[S]}$

- Slope: $-K_M$

- Intercept: v_{max}

Mathematical form:

$$v_0 = -K_M \frac{v_0}{[S]} + v_{max}$$

Complications to Enzyme Kinetics

 Many models, with different parameters, can result in the same functional form as Michaelis-Menten

Can only detect slowest step

 Forward and reverse reactions can help, but intermediates may complicate interpretation