Today: Miscellaneous Topics

• Electron Transfer Reactions

Electrostatic effects

Diffusion-limited reactions

Review: Transition States

Reaction Coordinate

- Fundamental relationship: $k = \frac{k_B T}{h} e^{-\frac{\Delta \overline{G}^{\ddagger}}{RT}}$
- Can we predict $\Delta \bar{G}^{\ddagger}$ for <u>any</u> system?

Electron Transfer

 Electron transfer essential for metabolic processes: cytochromes in eukaryotes

 Rubredoxin: electron carrier protein in bacteria and archaea

Simple Model

Simplest model for electron transfer:

$$^{56}\text{Fe}^{2+} + ^{54}\text{Fe}^{3+} \rightleftharpoons ^{56}\text{Fe}^{3+} + ^{54}\text{Fe}^{2+}$$

No free energy difference (no change)

- Two iron ions must collide to form electron transfer complex
 - Can we devise a mechanism?

Simple Model

Encounter complex forms

Solvent dipoles

 (water) must reorient
 to accommodate
 new charges

Marcus Theory

Reaction Coordinate

Rudolph Marcus (Nobel, 1992):

$$\Delta \bar{G}^{\ddagger} = \frac{\lambda}{4} \left(1 + \frac{\Delta \bar{G}^0}{\lambda} \right)^2 \text{ where } \lambda = (\Delta e)^2 \left(\frac{1}{2a_1} + \frac{1}{2a_2} - \frac{1}{r_{a_1 a_2}} \right) \left(\frac{1}{n^2} - \frac{1}{\epsilon} \right)$$

Marcus Theory

Transition State Energy:

$$\Delta \bar{G}^{\ddagger} = \frac{\lambda}{4} \left(1 + \frac{\Delta \bar{G}^0}{\lambda} \right)^2$$

Solvent Reorientation Energy:

$$\lambda = (\Delta e)^2 \left(\frac{1}{2a_1} + \frac{1}{2a_2} - \frac{1}{r_{a_1a_2}}\right) \left(\frac{1}{n^2} - \frac{1}{\epsilon}\right)$$
Charge Ionic Center-to-center Relative Transferred (e.g. +1) Radii Distance Dielectric Constant

Index of

Refraction

Marcus Theory - Significance

• Parabolic dependence of $\Delta \bar{G}^{\ddagger}$ vs $\Delta \overline{G}^{0}$

Marcus Theory - Significance

Figure 1. Intramolecular electron-transfer rate constants as a function of free energy change in MTHF solution at 296 K. Electrons transferred from biphenyl ions to the eight different acceptor groups, A (shown labeling the points), in eight bifunctional molecules having the general structure shown in the center of the figure.

$$\Delta \bar{G}^{\ddagger} = \frac{\lambda}{4} \left(1 + \frac{\Delta \bar{G}^{\,0}}{\lambda} \right)^2$$

• Parabolic dependence of $\Delta \bar{G}^{\ddagger}$ vs $\Delta \overline{G}^{0}$

Kinetics and Salt Effects

Transition state theory with activities

$$M + N \stackrel{K^{\ddagger}}{\rightleftharpoons} [MN]^{\ddagger} \stackrel{k^{\ddagger}}{\rightarrow} P$$

Equilibrium constant (with activity coefficients):

$$K = \frac{\gamma_{\ddagger}[MN]^{\ddagger}}{\gamma_{M}[M]\gamma_{N}[N]}$$

Rate law is then:

$$v = k^{\ddagger} K^{\ddagger} \frac{\gamma_M \gamma_N}{\gamma_{\ddagger}} [M][N] = k_0^{\uparrow} \frac{\gamma_M \gamma_N}{\gamma_{\ddagger}} [M][N]$$

Rate constant with

unit activity coefficients

Ionic Strength and Activities

Recall Debye-Hückel activities (chapter 4):

$$\log \gamma_i = -0.51 Z_i^2 \sqrt{I}$$

$$I = \frac{1}{2} \sum_i c_i Z_i^2$$

 Use these activities to derive an ionic-strength dependence of log k:

$$\log k = \log k_0 + 2(0.51)Z_M Z_N \sqrt{I}$$

Ionic Strength and Activities

Recall Debye-Hückel activities (chapter 4):

$$\log \gamma_i = -0.51 Z_i^2 \sqrt{I}$$

$$I = \frac{1}{2} \sum_i c_i Z_i^2$$

 Use these activities to derive an ionic-strength dependence of log k:

$$\log k = \log k_0 + 2(0.51)Z_M Z_N \sqrt{I}$$

Ionic Strength and Activities

- Applies for low ionic strengths
 - Remember assumptions!
- Must prove that effect is truly "ionic" and not saltspecific
 - Test with multiple salts

Diffusion Limited Reactions

 Is there a "speed limit" for reactions in solution?

 Diffusion coefficient: Relates distance traveled to time in "crowded" environment

$$\langle x^2 \rangle = Dt$$

- Small molecules $\sim 1 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$
- Higher D means more distance covered per unit time

Collision Theory

More collisions with solvent

 harder for molecules to interact

- Rate of collisions should be:
 - Proportional to diffusion constant
 - Proportional to size

Tinoco, p. 372.

Collision Theory

Arrhenius equation exponent (A):

$$A_{diff} = \frac{4\pi r_{MN} (D_M + D_N) N_A}{1000}$$

- For small molecules A $\sim 10^{10}$
- Termed "diffusion limited reactions"
 - Low activation energy (not necessarily zero)
 - Fast A coefficient

Collision Theory – Fast Rates

	Reaction	$k (M^{-1} \mathrm{s}^{-1})$
H+ + OH-		1.3×10^{11}
$H^+ + NH_3$		4.3×10^{10}
H ⁺ + imidazole		1.5×10^{10}
$OH^- + NH_4^+$		3.4×10^{10}
OH ⁻ + imidazole ⁺		2.3×10^{10}
	(ribonuclease + cytidine 3'-phosphate	6×10^{7}
Enzyme- substrate complex formation lactate dehydrogena creatine kinase + AI aspartate aminotran + α-methylaspart	lactate dehydrogenase + NADH	1×10^{9}
	creatine kinase + ADP	2.2×10^{7}
	aspartate aminotransferase	
	$+ \alpha$ -methylaspartate	1.2×10^{4}
	$+\beta$ -erythrohydroxyaspartate	3.1×10^{6}
		$>1 \times 10^{8}$
	-	5×10^{6}
O ₂ + hemoglobin		4×10^7

See a rate of $10^9 - 10^{10}$? \rightarrow Think diffusion controlled!

Tinoco, p. 374.