First Order Reactions

• Rate Law: Concentration with exponent of one

$$\frac{d[A]}{dt} = k[A]$$

- Basic Reaction: R → P
 - Rate doesn't depend on the product; spontaneous
- Example: Radioactive decay

First Order Reactions

• Example:

$$A \xrightarrow{k} B$$

- Rate Law for A and B:
 - "The rate of decay of A is proportional to the amount of A."

$$\frac{d[A]}{dt} = -k[A] \text{ and } \frac{d[B]}{dt} = k[A]$$

Starting conditions (at t = 0):

$$[A] = A_0$$
 and $[B] = B_0$

Plotting First Order Reactions

• Plotting $\ln A$ vs. t: $\ln A = \ln A_0 - kt$

• Fit Parameters:

- Intercept: $\ln A_0$
- Slope: -k

Second Order Reactions (Class I)

Rate Law: Concentration with exponent of two

$$\frac{d[A]}{dt} = k[A]^2$$

- Basic Reaction: R+R → P
 - Rate doesn't depend on the product; spontaneous
 - Two reactant molecules collide and form product
- **Example:** 2(Cysteine) → Cystine

Second Order Reactions (Class I)

• Example:

$$2A \xrightarrow{k} B$$

- Rate Law for A and B:
 - "The rate of decay of A is proportional to amount of A^2 ."

$$\frac{d[A]}{dt} = -k[A]^2 \text{ and } \frac{d[B]}{dt} = k[A]^2$$

Starting conditions (at t = 0):

$$[A] = A_0$$
 and $[B] = B_0$

Plotting Second Order Reactions

• Plotting A^{-1} vs. t:

$$A^{-1} = A_0^{-1} + kt$$

Fit Parameters:

- Intercept: A_0^{-1}
- Slope: *k*

First vs. Second Order: Single Species

First Order vs. Second Order Reaction Kinetics

Second Order Reactions (Class II)

Rate Law: Concentration with overall order of two

$$\frac{d[A]}{dt} = k[A][B]$$

- Basic Reaction: $R_1 + R_2 \rightarrow P$
 - Rate doesn't depend on the product; spontaneous
 - Two different reactant molecules collide and form product
- Example: DNA₁ + DNA₂ \rightarrow Duplex DNA

Second Order Reactions (Class II)

• Example:

$$A + B \xrightarrow{k} C$$

- Rate Law for A and B:
 - The rate laws for A and B are the same (Why?)
 - A and B must collide in order to react

$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -k[A][B] \text{ and } \frac{d[C]}{dt} = k[A][B]$$

• Starting conditions (at t = 0):

$$[A] = A_0$$
 and $[B] = B_0$ and $[C] = C_0$

Plotting Second Order Reactions

• Plotting A^{-1} vs. t:

$$\ln \frac{A}{B} = \ln \frac{A_0}{B_0} + (A_0 - B_0)kt$$

• Fit Parameters:

- Intercept: $\ln \frac{A_0}{B_0}$
- Slope: $(A_0 B_0)k$

Class I vs. Class II: A Special Case

• Example:

$$A + B \xrightarrow{k} C$$

• What if $A_0 = B_0$?

$$\ln \frac{A}{B} = \ln \frac{A_0}{B_0} + (A_0 - B_0)kt$$

- This won't work! $(A_0 B_0 = 0)$
- If initial concentrations are the same, Class II → Class I,
 even though actual species are different!
 - A and B are used up identically and [A] is not distinguishable from [B]

General Case

• Rate Law: Concentration with exponent of two

$$\frac{d[A]}{dt} = k[A]^n$$

- **Solution:** (Integration after separation of variables)
 - Same species, or $A_0 = B_0 = C_0 = ...$

$$\frac{1}{n-1} \left[\frac{1}{A^{n-1}} - \frac{1}{A_0^{n-1}} \right] = kt$$

Half Life:

$$t_{1/2} = \frac{2^{n-1} - 1}{(n-1)kA_0^{n-1}}$$

Summary of Rate Laws

Reaction order	Linear plot	Rate proportional to	Units of k
Zero-order	c vs. t	dc/dt = k	$M ext{ time}^{-1}$
First-order	$\ln c$ vs. t	dc/dt = kc	$time^{-1}$
Second-order (I)	1/c vs. t	$dc/dt = kc^2$	M^{-1} time ⁻¹
Second-order (II)	$\ln (c_A/c_B)$ vs. t	$dc_A/dt = kc_Ac_B$	M^{-1} time ⁻¹
n th-order ($n \neq 1$)	$1/c^{n-1}$ vs. t	$dc/dt = kc^n$	$M^{-(n-1)}$ time

Tinoco, p. 339.

Determining Orders and Rate Constants

- Critical: Make sure you know the stoichiometry!
- Method 1: Plot concentration vs. time
 - Linear indicates zero-order
 - Can use non-linear fitting techniques
- Method 2: Plot $\frac{d[A]}{dt}$ vs. time
 - Does it look linear, parabolic, etc.?
 - Drawback: many points are needed to get slope

Determining Orders and Rate Constants

Method 3: Initial velocities

- Initial velocity should reflect initial concentrations
- Assumption: concentrations don't change much
- Example: If $v = k[A][B]^2$, doubling $[B_0]$ should quadruple initial rate
- If [A₀], [B₀], v, and orders are known, solve for k algebraically

Determining Orders and Rate Constants

- Method 4: Elimination by excess
 - Add B in large molar excess compared to A
 - [B] won't change much, so

$$v = k[A]^a[B]^b \rightarrow v = k'[A]^a$$

- B will "drop out" of the rate law, measure [A] vs. t.