Multidimensional Functions

e Simple “3D” Function:
z=f(x,y)=x*+y’

e What’s “the
derivative?”

e Does our 2D definition
even make sense?
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Partial Derivative Example #1

z=f(x,y) =x%+y? (Zi) = 2Xx

y=-1.05 to -0.95 y=-0.8 to -0.7 y =-0.55 to -0.45 y=-0.05 to 0.05
x= -1 to 1 x= -1 to 1 x= -1 to 1 x= -1 to 1

e Looking at small slices along y, the slope in the x-z plane is
the same

e Key result: Partial derivatives tell us the slope in a specified
plane!
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Partial Derivative Example

z=f(x,y) =x°y +xy

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/




Partial Derivative Example #2

y=-0.05 to 0.05 y=0.95 to 1.05
x= -1 to 1

y=-1.05 to -0.95 y = -0.55 to -0.45
x= -1 to 1 x= -1 to 1 x= -1 to 1

e Partial derivative depends ony, so slope in x-z plane will

depend on which x-z plane
e Just because y was constant while taking the derivative,
doesn’t mean it has to be constant afterward!
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Partial Derivative Example #2

First partial derivative e First partial derivative
with respect to x (y with respect to y (x
constant): constant):

of af

— | =2xy + y? — | =x%+ 2x

Second partial derivative * Second partial derivative

with respect to y (x with respect to x (y
constant):_ _constant):_
d (df 0 <6f>
= 2x + 2 = 2x + 2
dy (6x> ey dx \dy N Y
- Yy - -y




Partial Derivative Example #2

First partial derivative e First partial derivative
wit "\\
Cco

( e |t’s true in general that:
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Self Test: Ideal Gas Law

 Consider the ideal gas law:

nRT
V(P, T, Tl) — T — TlRTP_l

e Calculate the following:

(6V) (6V)
— and [ —



Differentials

e If we know y, = f(x,) what’s the change in y, if x, is
changed a little (dx)?
dy df

Vo +dy = f(xg) + (E) dx = f(xg) + (E) dx

Differentials relate a small

* Therefore: change in one variable (dy)
4 toasmall change in other

dy = df d iable(s) (dx)
Y= dx *

e What’s the corresponding result for N-dimensions?



Differentials Example

e |f h(x) =f(x)g(x), can we flnd dh?

dh
= T F g

|/df (dg
dh = [(dx) dx] g(x) + f(x) (E) dx]

e Thus, it’s true that:
dh =df - g(x) + f(x) - dg = f(x)dg + g(x)df

e Remember your homework?
d(PV) = PdV + VdP



Multidimensional Differentials

e Iff=1(x,vy, z), we can write the exact differential
of f as:

~(of of of
df ) (f_x)Y,z " (ay)x,z dy (az)x,y ”

* This is a mathematical fact, not a thermodynamic
one (shown without proof), but it must apply to
all functions in thermodynamics
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But | Don’t Like Calculus...

e Last class, we determined that (for reversible
processes, only PV work):

AE =TAS — PAV

In other words, E is

a “natural function”
 For smaller changes: /ofSandV.
dE = TdS — PdV

e Combine the math with the science: Presto!
OF OE
I'= (&)V and P = — (W)S
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Summary: Gibbs Energy Changes

* To calculate changes in Gibbs energy at
constant Puse: AG = AH — TAS

— All our tricks for entropy, enthalpy apply
— Useful for calculating standard state reactions

e As alast resort use
[d(AG) = [,° AVdP — [,” AST
— Where AX = X X

products ~ ““reactants
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Summary: Gibbs Energy Changes

If AS, AH constant vs. T:
AG(T;) — AG(T,) = AS(T, — Ty)
AG(Tp) _ AG(TY) _ AH (1 1)

T T; T, Ty

Phase transitions: AG,- = 0

Chemical reactions behave like enthalpy, entropy
(why?)

Pressure changes
— Solids, liquids: AG(P,) — AG(P;) = AV (P, — P;)

— ldeal gasses: AG(P,) — AG(P;) = AnRT In (112_2)
1
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