Multidimensional Functions

• Simple "3D" Function: $z = f(x,y) = x^2 + y^2$

What's "the derivative?"

 Does our 2D definition even make sense?

$$z = f(x, y) = x^2 + y^2$$
, $\left(\frac{\partial f}{\partial x}\right)_y = 2x$

x = -1 to 1

y = -1.05 to -0.95 y = -0.8 to -0.7 y = -0.55 to -0.45x = -1 to 1

y = -0.05 to 0.05 x = -1 to

- Looking at small slices along y, the slope in the x-z plane is the same
- Key result: Partial derivatives tell us the slope in a specified plane!

$$z = f(x, y) = x^2y + xy^2$$

$$z = f(x, y) = x^2y + xy^2$$
, $\left(\frac{\partial f}{\partial x}\right)_y = 2xy + y^2$

x = -1 to 1

y = 0.95 to 1.05 x = -1 to

- Partial derivative depends on y, so slope in x-z plane will depend on which x-z plane
- Just because y was constant while taking the derivative, doesn't mean it has to be constant afterward!

 First partial derivative with respect to x (y constant):

$$\left(\frac{\partial f}{\partial x}\right)_{y} = 2xy + y^{2}$$

 Second partial derivative with respect to y (x constant):

$$\left[\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)_{y}\right]_{x} = 2x + 2y$$

 First partial derivative with respect to y (x constant):

$$\left(\frac{\partial f}{\partial y}\right)_{x} = x^2 + 2xy$$

 Second partial derivative with respect to x (y constant):

$$\left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)_{x}\right]_{y} = 2x + 2y$$

Self Test: Ideal Gas Law

Consider the ideal gas law:

$$V(P,T,n) = \frac{nRT}{P} = nRTP^{-1}$$

Calculate the following:

$$\left(\frac{\partial V}{\partial P}\right)_{T,n}$$
 and $\left(\frac{\partial V}{\partial T}\right)_{P,n}$

Differentials

• If we know $y_0 = f(x_0)$ what's the change in y_0 if x_0 is changed a little (dx)?

$$y_0 + dy \approx f(x_0) + \left(\frac{dy}{dx}\right)dx = f(x_0) + \left(\frac{df}{dx}\right)dx$$

Therefore:

$$dy = \left(\frac{df}{dx}\right) dx$$
 to a small change in other variable(s) (dx)

Differentials relate a small change in one variable (dy)

What's the corresponding result for N-dimensions?

Differentials Example

• If h(x) = f(x)g(x), can we find dh?

$$\frac{dh}{dx} = \frac{d}{dx} [f(x)g(x)]$$

$$dh = \left[\left(\frac{df}{dx} \right) dx \right] g(x) + f(x) \left[\left(\frac{dg}{dx} \right) dx \right]$$

• Thus, it's true that:

$$dh = df \cdot g(x) + f(x) \cdot dg = f(x)dg + g(x)df$$

Remember your homework?

$$d(PV) = PdV + VdP$$

Multidimensional Differentials

 If f = f(x, y, z), we can write the exact differential of f as:

$$df = \left(\frac{\partial f}{fx}\right)_{y,z} dx + \left(\frac{\partial f}{\partial y}\right)_{x,z} dy + \left(\frac{\partial f}{\partial z}\right)_{x,y} dz$$

 This is a mathematical fact, not a thermodynamic one (shown without proof), but it <u>must</u> apply to all functions in thermodynamics

But I Don't Like Calculus...

 Last class, we determined that (for reversible processes, only PV work):

$$\Delta E = T\Delta S - P\Delta V$$

For smaller changes:

$$dE = TdS - PdV$$

In other words, E is

a "natural function"

of S and V.

• Combine the math with the science: Presto!

$$T = \left(\frac{\partial E}{\partial S}\right)_V$$
 and $P = -\left(\frac{\partial E}{\partial V}\right)_S$

Summary: Gibbs Energy Changes

- To calculate changes in Gibbs energy at constant P use: $\Delta G = \Delta H T\Delta S$
 - All our tricks for entropy, enthalpy apply
 - Useful for calculating standard state reactions
- As a last resort use

$$\int d(\Delta G) = \int_{P_1}^{P_2} \Delta V dP - \int_{T_1}^{T_2} \Delta S dT$$

- Where $\Delta X = X_{products} - X_{reactants}$

Summary: Gibbs Energy Changes

• If ΔS, ΔH constant vs. T:

$$\Delta G(T_2) - \Delta G(T_1) = \Delta S(T_2 - T_1)$$

$$\frac{\Delta G(T_2)}{T_2} - \frac{\Delta G(T_1)}{T_1} = \Delta H\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

- Phase transitions: $\Delta G_{tr} = 0$
- Chemical reactions behave like enthalpy, entropy (why?)
- Pressure changes
 - Solids, liquids: $\Delta G(P_2) \Delta G(P_1) = \Delta V(P_2 P_1)$
 - Ideal gasses: $\Delta G(P_2) \Delta G(P_1) = \Delta nRT \ln \left(\frac{P_2}{P_1}\right)$