Heat Capacity: Extensive?

- Normally, C scales with size of system, but C per unit mass (or moles) does not:
 - $-\overline{C}_V$, \overline{C}_P : Molar heat capacity (J mol⁻¹ K⁻¹)
 - $-C_V^*$, C_P^* : Specific heat capacity (J mol⁻¹ kg)

When using molar or specific C, normal equations apply:

$$q = (mC_P^*)\Delta T$$
 or $q = (n\bar{C}_V)\Delta T$

Internal Energy: Molecular Examples

System: Tryptophan Molecule

Contributions to E:

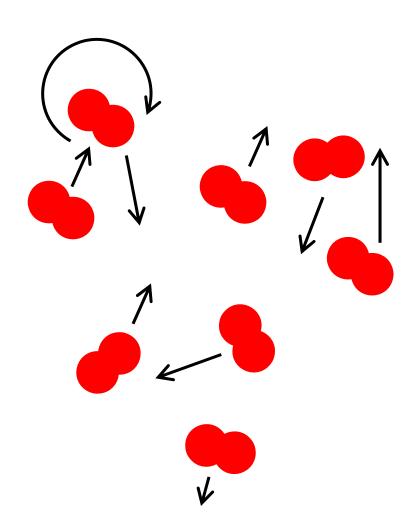
- Einstein mc² energy
- Bond vibrations
- Ionic interactions
- Covalent bonds
- Kinetic energy of nuclei moving within molecule

Internal Energy: Molecular Examples

System: Oxygen Gas

Contributions to E:

- Bond vibrations
- Covalent bonds
- Interactions energies
- Kinetic energy of gas molecules
- Rotational energy



Molecular Basis of Heat Capacity

- H-bonds in ice are inflexible, can't store much energy
- H-bonds in water can vibrate, rotate, move freely: can absorb lots of energy
- Very little H-bonding in water vapor: can't absorb energy

 $C_p = 38.09 \text{ J/K}$ $C_V = 38.08 \text{ J/K}$

$$C_P = 75.33 \text{ J/K}$$
 $C_V = 74.53 \text{ J/K}$

$$C_P = 37.47 \text{ J/K}$$
 $C_V = 28.03 \text{ J/K}$

Molecular Basis of Heat Capacity

- Thought process:
 "Where else can the energy go besides kinetic energies?"
 - Bond rotations
 - Bond vibrations
 - Molecular reorientation
 - Degrees of molecular freedom

 $C_p = 38.09 \text{ J/K}$ $C_V = 38.08 \text{ J/K}$

 $C_P = 75.33 \text{ J/K}$ $C_V = 74.53 \text{ J/K}$

 $C_p = 37.47 \text{ J/K}$ $C_V = 28.03 \text{ J/K}$

Question

I give you a container with 1 mol of N_2 gas with a pressure of 0.8 atm. Does it matter:

 If the 1 mol was formed directly or whether I purified it from the air?

 If I reduced the pressure by sucking some out with a syringe or by going up to high altitude before sealing the container?

State Variables

State variables describe the properties of the system, not how it got there.

- Pressure (P)
- Temperature (T)
- Internal Energy (E)

- Volume (V)
- Number (N)

HEAT AND WORK ARE NOT STATE VARIABLES!!

(why?)

State Equations: Combinations of State Variables

Ideal Gas Law:

$$PV = NRT$$

Van der Waals Gas:

$$\left(P + \frac{N^2 a}{V^2}\right)(V - Nb) = NRt$$

Dalton's Law of Partial Pressures:

$$P_{tot} = \sum_{i} P_{i} = \sum_{i} \frac{N_{i}RT}{V}$$

Calculating Changes to E and H

Situation: A system undergoes a change in state $(P_1, V_1, T_1, ...) \rightarrow (P_2, V_2, T_2, ...)$

- Step 1: Consider the path of change
 - Most changes are irreversible: the surroundings are changed in such a way that quantities can't be calculated easily
 - Devise a reversible path to get from state 1 to state 2: slow changes under fixed conditions; can be calculated
 - Since E and H are state functions, ΔE and ΔH (of the system) **must** be the same for both paths!

Calculating Changes to E and H

Situation: A system undergoes a change in state $(P_1, V_1, T_1, ...) \rightarrow (P_2, V_2, T_2, ...)$

- Step 2: Calculate q and w along the path
 - We will see examples of this
 - You will need to do some math
 - You may need to calculate (P, V, T) at intermediate points along your path

Calculating Changes to E and H

Situation: A system undergoes a change in state $(P_1, V_1, T_1, ...) \rightarrow (P_2, V_2, T_2, ...)$

- Step 3: Calculate ΔE and ΔH
 - Sum up individual contributions of q and w along the path
 - Because E and H are state functions, they must be correct regardless of your path as long as you start and end at the right state

Example 1: Changes in a Liquid

You heat 1 mol of water from T_1 (at $P_{1,} V_1$) to T_2 (at $P_{2,} V_2$) in a microwave. What are ΔE and ΔH of the gas?

Summary: ΔΕ, ΔΗ for Liquids & Solids

Constant Pressure:

•
$$q = \int C_P dT$$
 $w \cong -P(V_2 - V_1)$

Constant Temperature:

$$q \cong 0 \qquad w \cong 0$$

Constant Volume:

$$q = \int C_V dT$$
 $w \cong 0$

• Approximately, $\Delta E = \Delta H$

Example 2: Changes in an Ideal Gas

You heat 1 mol of gas from T_1 (at $P_{1,}$ V_1) to T_2 (at $P_{2,}$ V_2) in a nuclear reactor. What are ΔE and ΔH of the gas?

Summary: ΔE , ΔH for Ideal Gasses

Constant Pressure:

$$q = N\bar{C}_P(T_2 - T_1)$$
 $w = -P(V_2 - V_1)$

Constant Volume:

$$q = N\bar{C}_V(T_2 - T_1) \qquad w = 0$$

• Constant Temperature:

$$\Delta E = 0$$
 $w = -NRT \ln \frac{V_2}{V_1}$ $q = -w$