Biophysical Chemistry – CH 4403 01 Assignment 7 (40 points)

Due Friday, October 30 at 4:30 pm

Please complete the answers to this assignment on a separate page (or pages), showing your work and sources (if you referred elsewhere for constants, enthalpies, etc.).

1. Consider the following stoichiometric equation:

$$A + B + C \rightarrow D$$

By measuring the initial rate of the formation of D, you obtain the following table.

Initial [A] (mM)	Initial [B] (mM)	Initial [C] (mM)	Initial Rate (mM s ⁻¹)
10.0	10.0	10.0	0.100
20.0	10.0	10.0	0.141
20.0	30.0	10.0	0.423
20.0	20.0	20.0	1.131

- (a) Give the reaction order with respect to A, B, and C. What is the overall reaction order? (10 points)
- (b) Write a differential equation for the appearance of D. (2 points)
- (c) Calculate the rate constant *k* for this reaction, including units (3 points)
- 2. You are performing experiments on liver alcohol dehydrogenase (LADH), which can oxidize ethanol (EtOH) to acetic acid according to a zero-order rate law under certain conditions. If your sample contains 50 mM EtOH, how long would it take for you to have 25 mM EtOH if LADH has a *k* of 2 mM min⁻¹? (5 points)
- 3. Radioactivity is frequently measured in disintegrations per minute (dpm) where a disintegration represents a single radioactive decay event. In the familiar ticking of a Geiger counter, each "tick" represents a certain number of disintegrations, and therefore many ticks per unit time corresponds to a high *rate* for dpm. You measure a sample having 1.0×10^5 dpm, and two days later you measure the same sample and read 0.5×10^4 dpm. Given that one day is 1,440 minutes:
 - (a) What is the half-life of the isotope in minutes? (5 points)
 - (b) How many radioactive atoms were in the sample when you started (when the *rate* was 1.0×10^5 dpm)? (5 points)
- 4. Tinoco Chapter 9, question #8 (10 points)